Home page  Catalogue  Classes  Tables  Glossary  Notations  Links  Bibliography  Thanks  Downloads  Related Curves 

too complicated to be written here. Click on the link to download a text file. 

X(54), X(112), X(115), X(826) Brocard points A', B', C' : vertices of the cevian triangle of K 

Consider two points X(t), Y(t) with trilinear coordinates X(t) = cos(A + t) : : and Y(t) = sin(A + t) : : . These points lie on the Brocard axis. See Table 38. For any real number t, • X(t) and Y(t) are conjugated with respect to
• the circle with diameter X(t)Y(t) contains the Brocard points, • the circumconic passing through X(t), Y(t) contains X(54), the isogonal conjugate of X(5). These two curves meet at two other points collinear with X(115) that lie on the cubic K629. K629 is a circular cubic with singular focus X(14675) whose isogonal transform is K630. These two cubics generate a pencil of circular circumcubics passing through the Brocard points and two other (not always real) points which are the common points of the line X(110)X(512) and its isogonal transform. See a figure at the page K630. This pencil is invariant under isogonal conjugation and contains K021 = pK(X6, X512), nK(X111, X111, X523), nK(X187, X6, X110) and the isogonal focal cubic nK(X6, X187, X3906*) where X3906* is the isogonal conjugate of the infinite point X3906. 
