Home page  Catalogue  Classes  Tables  Glossary  Notations  Links  Bibliography  Thanks  Downloads  Related Curves 

X(2), X(3), X(4), X(13), X(14), X(67), X(1113), X(1114) midpoints of ABC Ga, Gb, Gc vertices of the antimedial triangle A', B', C' projections of O on the sidelines of the antimedial triangle points Ua, Ub, Uc mentioned in the Neuberg cubic page. See also table 16 and table 18. points at infinity of the Thomson cubic foci of the inconic with perspector X(76), center X(141) 

Q050 is a circular quintic with singular focus G. It has three real asymptotes parallel to those of the Thomson cubic. A, B, C are double points on the curve. Q050 is the locus of point M such that G, M and the isogonal conjugate of M with respect to the circumcevian triangle of M (or the inverse in (O) of the isogonal conjugate of M) are collinear. The isogonal transform of Q050 is Q136. *** Generalization Let P be a point. The locus of point M such that P, M and the isogonal conjugate of M with respect to the circumcevian triangle of M are collinear is in general a circular circumquintic Q(P) passing through H, P, the vertices of the cevian triangle of P, the infinite points of pK(X6, P), the foci of the inconic with perspector tgP and center cgP, the intersections of the circumcircle and the line OP when P ≠ O (when P = O, Q(P) splits into the circumcircle and the McCay cubic). A, B, C are three nodes on Q(P). For example, Q050 = Q(X2) and Q094 = Q(X6). Special cases :
*** A pencil of related quintics Q003 and the union of the line at infinity, the circumcircle, the Kiepert hyperbola generate a pencil of circular trinodal circumquintics which contains Q050, Q135 and several other curves. 
